
CHAPTER

21
Using Internet Direct

1

ApDev / Building Kylix Applications / Jensen & Anderson / 2947-6 /

IN THIS CHAPTER:

Which Comes First, the Client or the Server?

A Simple Server Example

A Database Server Example

Handling Exceptions in Clients

Sending Mail Using TIdSMTP

A ZIP Code Lookup Server and Client

Creating a Console Server

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:44:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

I n the preceding chapter, you learned about the various classes included in Internet
Direct that you use to build clients and servers for the distributed environment.
This chapter continues this discussion with an in-depth look at a number of

applications that use Internet Direct components.

Which Comes First, the Client or the Server?
When you need to build a new client for an existing server using an established protocol,
your task focuses solely on the development and testing of the client application.
However, when your needs call for both a client and a server application, whether you
are using an established protocol or a protocol you define yourself, you are faced with the
classic “chicken or the egg” problem. Which to you build first—the client or the server?

Obviously, you eventually need to build both the client and the server in order to
ensure that they work together smoothly. But is there one that you can typically start
with? Fortunately, the answer is simpler than you might have thought. In many instances,
particularly when your protocol is text-based (for example, HTTP, Hypertext Transfer
Protocol), the server is easier to build first. While it is true that to test a server, you need a
client, and to test a client, you need a server, there is a handy client that already exists that
you can use to test almost any text-based server. This is the Telnet application.

Using Telnet to Test a Text-Based Server
If you have Apache installed and running on your machine, and Telnet is installed,
you can demonstrate this very easily. To do this, use the following steps:

1. From the command prompt, or, if you are in an X Window session, from a
console window, typetelnet followed by the server name and the port on
which the server is listening. For example, assuming that Apache is listening
on port 80 (the default port for Web servers), type the following command:

telnet 127.0.0.1 80

2. The Telnet session should respond that the connection has been accepted, as
shown in Figure 21-1. Next, type the following command and pressENTER.

Make sure to include one space before and one space after the first forward
slash (/), but no other spaces:

GET / HTTP/1.0

2 B u i l d i n g K y l i x A p p l i c a t i o n s

ApDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:44:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3. Now pressENTERone more time. After the GET command is received, the
Web server waits for headers. The end of the request is signaled by a blank
line, which is supplied by the second carriage return.
This GET command, when submitted to an HTTP server, while not a very
meaningful request, asks the Apache server to return the default resource,
which is typically a default HTML page (on many servers, this is the home
page). Depending on how you have Apache configured, your output might look
something like that shown in Figure 21-2. The default page delivered from this
Apache server is longer than can be displayed in the command window, so
only the end of the reply is shown. Notice in this figure that after the request
was satisfied, the server again closed (terminated) the connection.

4. If you are still in your Telnet session, exit by typingquit .

NOTE

If you do not have Apache running, but you are connected to the Internet, you can use a domain
name, such as www.borland.com, instead of 127.0.0.1. That domain name will be resolved to the
IP address of the domain and will attempt to attach to a Web server at whatever port you specify
(most Web servers listen on port 80).

C h a p t e r 2 1 : U s i n g I n t e r n e t D i r e c t 3

AppDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

Figure 21-1 Starting a simple Telnet client and connecting to the local Web server

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:44:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

4 B u i l d i n g K y l i x A p p l i c a t i o n s

ApDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

Now that you see how easy it is to test a text-based server using Telnet as a client,
the following example shows you how to create a simple text-based server using
Internet Direct components.

A Simple Server Example
Many servers, once they have accepted your connection, perform the following steps:

þ Optionally signal readiness

þ Wait for a request

þ Respond to the request

þ Close the connection

The following steps demonstrate how to use the TIdTPCServer component to
create a simple, text-based TCP (Transmission Control Protocol) server.

WEB REFERENCE

This project can be found in the code samples in the simpletcpserver directory.

Figure 21-2 The Web server responded to a request for the default HTML page by
returning the entire requested HTML file to the Telnet client, after which the
server terminated the connection.

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:44:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

To create this example, use the following steps:

1. Create a new project.

2. Add to the main form a TIdTCPServer, located on the Indy Servers page of the
Component Palette. The main form is shown here:

Ill 21-1

3. Set the IdTCPServer component’s DefaultPort property to6002and its Active
property to True. (You can choose any arbitrary port number above 1024.
However, make sure that you select a port that is not being used by some other
application on your network.)

4. Add the following OnExecute event handler to the IdTCPServer:

procedure TForm1.IdTCPServer1Execute(AThread: TIdPeerThread);
var

s: String;
i: Integer;

begin
with AThread.Connection do

try
WriteLn('Type an integer and Enter');
s := ReadLn;
try

i := StrToInt(s);
WriteLn(s + ' squared is ' + IntToStr(i*i));

except
WriteLn(s + ' is not an integer');

end;
finally

Disconnect;
end;

end;

5. As you can see in this code, it is anticipated that exceptions will be raised.
Handling exceptions is discussed a little later in this chapter. However, in order
that your server, running in the IDE, does not load the integrated debugger,

C h a p t e r 2 1 : U s i n g I n t e r n e t D i r e c t 5

AppDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:44:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

temporarily disable the integrated debugger by selecting Tools | Debugger
Options from Kylix’s main menu. Uncheck the Integrated debugging checkbox
located in the lower-left corner of the Debugger Options dialog box. Close the
dialog box to return to your project.

6. Now save your project and then run it.

7. Open a console window.

8. Begin a Telnet session, and connect to your simple server by entering the
following command at the command prompt. Remember to use the same
port number you defined for the TIdTCPServer DefaultPort property:

telnet 127.0.0.1 6002

9. The simple server signals that it is ready to receive a request by displaying
the instructions to enter an integer, as shown here:

Ill 21-2

10. Type5 and pressENTER. The server responds by displaying the result of its
calculation, and then closes the connection, as shown here:

Ill 21-3

11. Begin a new Telnet session (Hint: Press theUP ARROWkey to restore the last
entered command and then pressENTER).

6 B u i l d i n g K y l i x A p p l i c a t i o n s

ApDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:44:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

12. This time enter some nonnumeric text (an invalid entry). The server responds
with an error message, as shown here:

Ill 21-4

Obviously, this was a very simple example. However, it does not take much
imagination to envision including some sophisticated formulas in this simple server
to produce a calculating engine that could be used by any client on the Internet.

CAUTION

It is true that any client on the Internet could potentially access this server. However, many clients
will not be able to because they are located behind a firewall (especially corporate clients).
Firewalls permit clients to communicate with servers outside of the firewall using only selected port
numbers, such as port 80. In order to communicate with this server, a client behind a firewall will
likely have to ask the network administrator to open port 6002 in the firewall, which is something
that network administrators are often reluctant to do, unless there is a compelling reason to do so.

TIP

If you turned off integrated debugging, do not forget to turn it back on.

Threads and the IdTCPServer
Before continuing, the use of the AThread parameter of the OnExecute event handler
deserves mention. The TIdTCPServer class is multithreaded, utilizing one thread for
each connection it accepts. This is a powerful element of its design, in that it permits
a single IdTCPServer to handle many simultaneous requests, a common occurrence
in the concurrent environment of distributed servers.

In short, for each client connection that the IdTCPServer accepts, it uses a dedicated
thread, invoking the OnExecute event handler from that thread. The AThread formal
parameter of OnExecute is a reference to this particular thread. The Connection
property of AThread references the internal TIdTCPConnection instance that was

C h a p t e r 2 1 : U s i n g I n t e r n e t D i r e c t 7

AppDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:44:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

created to process this particular client connection (the one associated with this
particular invocation of OnExecute). TIdTCPConnection is a rich class that provides
you with extensive support for reading and writing over the connection, as well as
terminating (disconnecting) the connection.

The major points of this discussion are:

þ A separate thread is created to handle each client request that is accepted.

þ OnExecute is executed by the thread created to handle a particular client’s
request. This means that OnExecute may be executing two or more times
simultaneously.

þ The AThread formal parameter of OnExecute is a reference to the thread
that is assigned to handle that particular client request.

þ The Connection property of the AThread parameter gives you access to the
TIdTCPConnection created within that thread. The Connection property
represents the Client’s connection.

þ You use the TIdTCPConnection properties and methods in the Connection
property of AThread to implement all interaction with the client.

That OnExecute executes concurrently for simultaneous client requests is
demonstrated in the next section, which demonstrates how to create a server that
returns information from a database.

Blocking Calls and Concurrency
As you learned in an earlier chapter, Internet Direct uses blocking socket connections.
From the perspective of a client application making calls to an Internet Direct server, this
means that requests made of the server will pause while the server produces the response.

The simple server you created in this previous example does this as well, but you
probably did not notice this. Specifically, after you type an integer into the Telnet
session and pressENTER, there is a pause while the server reads the input, performs
the calculation, and writes the output. In this case the pause is extremely brief,
seeming almost instantaneous. But this is not the case with all servers. For example,
the request you send to a server that must access a database may include a number of
steps that take more than a few seconds to complete before the response can be
returned. In those instances, the client will appear frozen for a few moments while
the server completes its task.

But what is particularly important about blocking, as far as Internet Direct servers
are concerned, is that the delay in responding to one client’s request is independent

8 B u i l d i n g K y l i x A p p l i c a t i o n s

ApDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:44:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

of all other client requests, precisely because IdTCPServer uses a different thread
for each client request. For example, if it takes a server five seconds to produce the
response to a single client request, and two clients issue a request at the same time,
each request will be satisfied in about five seconds total, not ten seconds. In other
words, response time is not cumulative, since each request is handled independently
and concurrently.

You can demonstrate this effect easily using the SimpleTCPServer project. To do
this, use the following steps:

1. Display the OnExecute event handler for the IdTCPServer component you
placed on the main form. Add a new line following thetry keyword, and
enter the following statement:

sleep(5000);

2. Compile and run the server.

3. Open at least two console windows. Connect to the server from the command
prompt in each console window by entering the following statement:

telnet 127.0.0.1 6002

4. Enter an integer into each console window, but do not yet pressENTER. After
you have prepared each window, quickly move to each window and press
ENTER. The server will receive these requests, one after the other.

5. Notice that after about five seconds, each console window will receive the
response from the server, one after the other. In other words, the second
console window into which you pressedENTERdid not have to wait another
five seconds after the first console window received its reply. Instead, both
console windows were responded to independently of one another.

OnExecute and Exceptions
Normally, when an unhandled exception is raised in Kylix, the method from which
it is raised ends abnormally, and none of the remaining statements in the method
are executed. If an unhandled exception occurs within the OnExecute method of a
IdTCPServer, and it occurs prior to the server responding to the client and disconnecting,
the client may have to wait until the TCP stack times out, which may be as long as a
minute or two. As a result, it is important to handle exceptions within OnExecute.

At a minimum, your OnExecute method should include atry-finally block,
where the Disconnect method of the TIdTCPConnection is called in thefinally
block. If an exception occurs, the client will be immediately disconnected, preventing
it from waiting for a response that will never come.

C h a p t e r 2 1 : U s i n g I n t e r n e t D i r e c t 9

AppDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:44:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

If you want to design your server so that it will inform a client about an encountered
error, possibly providing information to the client that it can use to reformulate its
request, you should also include atry-except block in your OnExecute method.
From theexcept block, you can either simply write the error to the client (using one
of the write methods) or use one or moreon blocks within theexcept clause to
determine the nature of the exception, and write specific information to the client.

The use of both atry-except and atry-finally is shown in this skeletal
OnExecute method:

L 21-1 procedure TDataModule1.IdTCPServer1Execute(AThread: TIdPeerThread);

var

s: String;

begin

with AThread.Connection do

try

try

s := ReadLn;

// Perform the task of the server here

// if no exception is raised,

// write out the server's response

WriteLn(s);

except

on e: Exception do

begin

WriteLn(e.Message);

end; //on

end; //try except

finally

Disconnect;

end;

end;

A Database Server Example
While the server created in the preceding example was self-contained, being capable of
responding to the client’s request without assistance, modern distributed computing
increasingly relies on multiple servers to satisfy a client request. One of the more
common types of servers in this category is the middleware server, a server that
receives a client’s request and then communicates with one or more other servers
on the network before responding to the client. Application servers are one type of
middleware server. Middleware servers are an important part of multitier computing.

1 0 B u i l d i n g K y l i x A p p l i c a t i o n s

ApDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:44:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The middleware server created in the following section is an example of a
database server, in that it returns data from a database. This server, however, does
not read and write from database files directly. Instead, it communicates to a
relational database server (RDBMS) to retrieve the data requested by the client.
Once the client application is involved, the result is a three-tier application.

In the following section, you will write a database server that accepts a customer
number from the client and performs a lookup for that customer’s company name
and contact first and last name using an InterBase server. You will also build a client
for this server, using Internet Direct components. In addition, in a later section you
will learn how to write a multithreaded client to test the server by executing
multiple, simultaneous requests to the server.

Creating the Database Server
Use the following steps to create the database server.

WEB REFERENCE

This project can be found in the code samples in the dbserver directory.

1. Create a new application. Place on it one IdTCPServer component from the
Indy Servers page of the Component Palette.

2. Set the IdTCPServer’s DefaultPort property to6001and its Active property
to True.

3. Add a data module to this project by selecting File | New and then
double-clicking the Data Module wizard from the New page of the
Object Repository.

4. Add a SQLConnection and a SQLDataSet to the data module from the
dbExpress page of the Component Palette.

5. Set the SQLConnection’s ConnectionName property to IBLocal, and its
LoginPrompt property to False.

NOTE

If you have not configured the IBLocal connection to point to the employee.gdb database,
refer to the discussion of configuring database connections in Chapter 6 before continuing.

6. Set the SQLDataSet’s SQLConnection property to SQLConnection1, and set
its CommandText property to the following SQL statement:

select CUSTOMER, CONTACT_FIRST, CONTACT_LAST from CUSTOMER
where CUST_NO = :cust

C h a p t e r 2 1 : U s i n g I n t e r n e t D i r e c t 1 1

AppDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:44:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

7. Return to the main form. Select File | Use Unit, and select the unit associated
with the data module to add it to the main form’suses clause.

8. Next, select the IdTCPServer. Add the following OnExecute event handler to it:

procedure TForm1.IdTCPServer1Execute(AThread: TIdPeerThread);
var

cust: Integer;
DataModule: TDataModule2;

begin
with AThread.Connection do
try

try
DataModule := TDataModule2.Create(nil);
try
cust := StrToIntDef(ReadLn, 0);
if cust = 0 then
begin

WriteLn('Not found');
Exit;

end; // if cust = 0
DataModule.SQLDataSet1.Params[0].Value := cust;
DataModule.SQLDataSet1.Open;
if DataModule.SQLDataSet1.IsEmpty then

WriteLn('Not found.')
else

WriteLn(DataModule.SQLDataSet1.Fields[0].AsString +
' contact name is '+
DataModule.SQLDataSet1.Fields[1].AsString + ' ' +
DataModule.SQLDataSet1.Fields[2].AsString);

except
on e: Exception do
begin

WriteLn('Error: ' + e.Message);
end; //on

end; // try
finally

DataModule.Free;
end; // try

finally
Disconnect;

end; //with try
end;

9. Save your project, and then run it.

10. Open a console window, and then type the following command at the
command prompt:

telnet 127.0.0.1 6001

1 2 B u i l d i n g K y l i x A p p l i c a t i o n s

ApDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:44:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

11. After a moment, the server accepts then connection. Now type1001and press
ENTER. The server receives the data, executes the query, and then returns the
result shown here:

Ill 21-5

NOTE

The technique used in this example, that of creating a new data module to handle each client
request, and releasing the data module when the client is through, is a simple approach that is fine
for low-load servers. (A low-load server is one that does not respond to many requests. Obviously,
"low load" is a relative term, relative to the available resources on the server.) However, the
process of creating a new connection for each client is resource intensive, and this design will
produce poor performance under heavy load conditions. When each client needs a resource that is
expensive, resource-wise, to create, you should consider pooling these resources. Specifically, for a
high-load version of this server, the database connections should be pooled. An easy way to pool
database connections is to use a thread pool, creating the connection in each thread’s constructor,
and releasing the connection in the corresponding destructor. See Internet Direct’s online help for
more information on thread pooling.

Creating the Database Client
Creating clients using Internet Direct is as easy as creating servers. As you learned in
Chapter 20, Internet Direct clients are blocking, meaning that you read from and write
to a server in much the same fashion as you read from and write to a file using
Kylix’s standard file I/O (input/output) routines. Specifically, once your client’s
connection has been accepted, you use write methods to send data to the server,
and read methods to get data from the server.

Most servers need some information before they can reply to a client. For example, in
the database server created in the preceding section, the client must write the customer
number to the server in order to tell the server which customer the client is interested in.
After writing the customer number using one of the available write methods, the client
should read (using one of the read methods) in order to receive the server’s reply. The

C h a p t e r 2 1 : U s i n g I n t e r n e t D i r e c t 1 3

AppDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:44:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

call to a read method, like the other calls in Internet Direct, is blocking, meaning that
the call to read does not succeed until the server writes a response or a timeout occurs.

WEB REFERENCE

This project can be found in the code samples in the dbclient directory.

The following steps demonstrate how to use Internet Direct to create a client for
the server you created in the preceding section:

1. Create a new project.

2. Place on this form three Label components, one Edit component, and one Button
component from the Standard page of the Component Palette. Also place a
TIdTCPClient component from the Indy Clients page of the Component Palette.
Organize these components in an arrangement similar to this:

Ill 21-6

3. Set the caption of Label1 toCustomer Number, the caption of Label2 to
Lookup Return Value:, and the caption of Label3 to an empty string.

4. Next, set the Caption property of Button1 toPerform Lookup.

5. Now set the Host property of the IdTCPClient to127.0.0.1, and the Port
property to6001.

6. Add an OnClick event handler to the Perform Lookup button. Edit this event
handler to look like the following:

procedure TForm1.Button1Click(Sender: TObject);
begin
with IdTCPClient1 do
begin

Connect;
try

WriteLn(Edit1.Text);

1 4 B u i l d i n g K y l i x A p p l i c a t i o n s

ApDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:44:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Label3.Caption := ReadLn;
finally

Disconnect;
end;

end;
end;

7. That is all it takes. Save the project.

Before you can run this project successfully, you will need to launch the server.
In order to test the client in the Kylix IDE, you will need to launch the server from
a command window. To do this, use the following steps:

1. Open a command window, and make the directory in which you saved and
compiled the DBServer project the current directory.

2. Set the LD_LIBRARY_PATH environment variable to the Kylixbin
directory. Assuming that Kylix is stored in the/usr/local/kylix
directory, this command will look like the following:

LD_LIBRARY_PATH="/usr/local/kylix/bin/"

3. Export the LD_LIBRARY_PATH variable by entering the following command
at the command prompt:

export LD_LIBRARY_PATH

4. Assuming that you saved your server project using the name DBServer, and it
is compiled, you can launch the server by entering the following command:

./DBSever

5. After a moment, your server should load and start listening on port 6001.

You are now ready to test your client application. From the IDE with the client project
open, select Run | Run or pressF9. Once the client is running, enter a customer number in
the Customer number field, such as1001, and then click the Perform Lookup button.
After a moment, your client should look like that shown in Figure 21-3.

Handling Exceptions in Clients
Handling exceptions with Internet Direct clients is the same as handling exceptions
with files. If an error occurs during the execution of an Internet Direct method, an
appropriate exception is raised. To handle these exceptions, source code should be
properly wrapped withtry-finally or try-except blocks.

C h a p t e r 2 1 : U s i n g I n t e r n e t D i r e c t 1 5

AppDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:44:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Just as any call to open a file using standard file I/O routines should be matched
with a call to close the file, any Connect call in Internet Direct should be matched with
a call to Disconnect. At a minimum, your calls to Connect should be matched with
calls to Disconnect in afinally clause, similar to the example shown here (this
approach was used in the DBClient example):

L 21-2 Client.Connect;

try

//Perform reading/writing

finally

Client.Disconnect;

end;

Instead of simply disconnecting, you may actually want to handle any exceptions
that are raised through your invocation of Internet Direct component methods.
Fortunately, Internet Direct exceptions are easy to distinguish from other Kylix
exceptions because all Internet Direct exceptions descend from EIdException. If you
want to handle Internet Direct exceptions differently from other exceptions, you can
do so using atry-except similar to this one:

L 21-3 try

Client.Connect; try

//Perform reading/writing

finally

Client.Disconnect;

end;

except

on e: EIdException do

begin

1 6 B u i l d i n g K y l i x A p p l i c a t i o n s

ApDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

Figure 21-3 The DBClient application uses a TIdTCPClient component to request
information from the DBServer application.

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:44:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ShowMessage('Communication Exception: ' + e.Message);

end // on EIdException

on e: Exception do

begin

ShowMessage('Error: ' + e.Message);

end; // on Exception

end;

Detecting Disconnects from the Client
Internet Direct uses blocking socket calls, and its events are only status related. As a
result, there are no events associated with a prematurely disconnected connection. If
a read or write call is in progress when a premature disconnect occurs, an exception is
raised and can be handled if you like. However, if no read or write call is in progress,
no exception will be raised until a read or write call is attempted again over the
disconnected socket.

Some developers are uncomfortable with this fact, contending that they need to
know immediately when a connection has been lost. This issue brings to mind the
old philosophical question—“If a tree falls in the forest and no one is present to hear
it, does it make a sound?” In reality, if a socket disconnects prematurely, and it is not
being accessed, does it really matter if the connection was lost or not? Probably not.
If a socket closes and it is not being accessed, no exception will be raised and no
event will be fired until the socket is accessed. Once more, this issue is similar to
that encountered when accessing files using standard file I/O routines. If a file on a
floppy is open, and the floppy is removed from the drive, no error will occur until
the next attempt to access that file. If no further attempt ever occurs, no harm done.

Note that even in the case where a connection is lost during a read or write operation,
an exception may not be raised immediately. This is true of any socket connection,
not just Internet Direct–related sockets. For example, if your network cable becomes
disconnected, it may take a minute or more before the exception occurs. This is because
the stack will wait for timeouts from the other side of the connection, as well as
attempt retries.

Testing a Server with a Multithreaded Client
As you learned in the Chapter 13, one valuable use for threads is testing a server
with multiple, concurrent client requests. In short, you can create a thread that
encapsulates an IdTCPClient that requests data from the server. You can then create
one or more of those threads and observe your server’s behavior under load.

C h a p t e r 2 1 : U s i n g I n t e r n e t D i r e c t 1 7

AppDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

WEB REFERENCE

This project can be found in the code samples in the dbclientthreaded directory.

The DBClientThreaded project, whose main form is shown in Figure 21-4, provides
you with a sample project that can spawn multiple threads, each of which repeatedly
requests information from the DBServer server created earlier in this chapter.

Since the majority of the work performed in this project is performed by a thread,
it is best to consider that code first. The following is the Threadu unit, which defines
a TThread class named TTCPClientThread:

L 21-4 unit Threadu;

interface

uses

Classes, Math, SysUtils, IdBaseComponent, IdComponent,

IdTCPConnection, IdTCPClient;

type

TTCPClientThread = class(TThread)

private

FPort: Integer;

FHostID: String;

FCustomerInfo: String;

{ Private declarations }

protected

IdTCPClient: TIdTCPClient;

procedure Execute; override;

procedure UpdateList;

public

destructor Destroy; override;

property HostID: String read FHostID write FHostID;

property Port: Integer read FPort write FPort;

end;

implementation

uses Main;

procedure TTCPClientThread.UpdateList;

begin

Form1.Memo1.Lines.Add(FCustomerInfo);

end;

1 8 B u i l d i n g K y l i x A p p l i c a t i o n s

ApDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

procedure TTCPClientThread.Execute;

begin

try

IdTCPClient := TIdTCPClient.Create(nil);

IdTCPClient.Host := FHostID;

IdTCPClient.Port := FPort;

while True do

begin

with IdTCPClient do

begin

if Terminated then Exit;

try

Connect;

try

WriteLn(IntToStr(RandomRange(1001, 1015)));

if Terminated then Exit;

FCustomerInfo := ReadLn;

Synchronize(UpdateList);

finally

Disconnect;

end; // try finally

except

end;

if Terminated then Exit;

sleep(RandomRange(1,Random(100)));

end; //with

end; //while True

except

//Something went wrong. Terminate the thread

Exit;

end;

end;

destructor TTCPClientThread.Destroy;

begin

if IdTCPClient <> nil then

IdTCPClient.Free;

inherited;

end;

initialization

Randomize;

end.

C h a p t e r 2 1 : U s i n g I n t e r n e t D i r e c t 1 9

AppDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

As you inspect the TTCPClientThread class, you will notice that it has member
fields for the TIdTCPClient instance, the host IP address, the host port, and the
customer information that it expects to receive after the thread is created. It also has a
method, named UpdateList. UpdateList is used with Synchronize to write to a Memo
control on the main form. (As you learned in Chapter 13, any time a thread needs to
work with visual components, it must do so from within a call to Synchronize.)

Turning our attention now to the Execute method of the thread, you will notice
that it begins with atry-except block that will terminate the thread if something
goes wrong. Next, it starts by creating a TIdTCPClient instance, which it will use to
connect to the server. It then initializes this IdTCPClient with the HostID and Port
values that it expects to have been assigned to the thread during its creation.

Once initialized, the IdTCPClient is connected to the server, a randomly generated
customer number is sent to the server, and the server’s response is read. This data is
then written to the Memo component on the main form using the Synchronize method,
after which the thread disconnects. Finally, the thread sleeps for a random moment
before repeating the process. (This sleep is done to stagger the calls to the server when
multiple threads are running simultaneously. Doing this was not necessary, but it
makes the calls to the server more realistic).

You will also notice in the code that this thread is constantly checking to see if it has
been terminated, exiting the Execute method if it has been terminated. Furthermore,
the thread’s tasks are wrapped in atry-except clause, which is used to handle any
exceptions raised by a lost connection with the server.

The final characteristic of this unit worth noting is the overridden destructor for the
thread. Within this destructor, if the IdTCPClient reference was created, it is freed.

The main form contains a button, labeled Start. The button’s Onclick event handler
creates one or more instances of the TTCPClientThread class. This method assumes
that there will be a dynamic array of TTCPClientThread type. The following is this
array’s declaration:

2 0 B u i l d i n g K y l i x A p p l i c a t i o n s

ApDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

Figure 21-4 The main form of the DBClientThreaded project

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

L 21-5 var

ThreadArray: array of TTCPClientThread;

The following is this Start button’s OnClick event handler:

L 21-6 procedure TForm1.Button1Click(Sender: TObject);

var

i: Integer;

begin

if Button1.Caption = 'Stop' then

begin

for i := low(ThreadArray) to High(ThreadArray) do

ThreadArray[i].Terminate;

Button1.Caption := 'Start';

end

else

begin

Button1.Caption := 'Stop';

SetLength(ThreadArray, SpinEdit1.Value);

for i:= 0 to Pred(SpinEdit1.Value) do

begin

ThreadArray[i] := TTCPClientThread.Create(True);

with ThreadArray[i] do

begin

FreeOnTerminate := True;

HostID := Edit2.Text;

Port := StrToInt(Edit3.Text);

Resume;

sleep(200); //wait briefly before

//creating next thread

end; //with

end;// for

end; //else

end;

When clicked, the button begins by testing its Caption property. If the caption is
Stop, the button iterates through the thread array, terminating each thread. If the
caption is not stopped, this event handler uses the value of the SpinEdit component
to determine how many threads to generate. Once generated, these threads will
independently hit the server, displaying the returned results in the main form’s
memo. Figure 21-5 shows what this project looks like when it is running with five
threads pounding the DBServer server.

C h a p t e r 2 1 : U s i n g I n t e r n e t D i r e c t 2 1

AppDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Sending Mail Using TIdSMTP
Now that you know the basics of client and server creation with Internet Direct, it is
time to move on to some more complex examples. The first example is an application
named ThreadedSMTPClient, whose main form is shown in Figure 21-6. This is a
client application you can use to send e-mail using SMTP (Simple Mail Transfer
Protocol). This project uses a TIdSMTP component. This example also requires the
use of two of the helper classes included in Internet Direct. These are TIdMessage
and TIdThread.

WEB REFERENCE

This project can be found in the code samples in the threadedsmtpclient directory.

Creating the Message
To send a message using TIdSMTP, you must first construct the message using a
separate object of type TIdMessage. This component appears on the Indy Misc page
of the Component Palette and is declared in the IdMessage unit. TIdMessage represents
an Internet message format and all of its associated parts and headers. The TIdSMTP,
TIdPOP3, and TIdNNTP classes of Internet Direct use TIdMessage to send and
receive messages.

2 2 B u i l d i n g K y l i x A p p l i c a t i o n s

ApDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

Figure 21-5 The DBClientThreaded application running five simultaneous threads, each
using an IdTCPClient to make requests of the DBServer server

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating and configuring an IdMessage at runtime is demonstrated in the
following code segment:

L 21-7 var

LMsg: TIdMessage;

…

LMsg := TIdMessage.Create(nil);

try

with LMsg do

begin

From.Address := 'Me@MyDomain.com';

Recipients.Add.Address := 'You@YourDomain.com';

Subject := 'Test Subject';

Body.Text := FSubject;

end;

finally

LMsg.Free;

end;

C h a p t e r 2 1 : U s i n g I n t e r n e t D i r e c t 2 3

AppDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

Figure 21-6 The main form of the ThreadedSMTPClient project provides an interface for
defining and sending e-mail.

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This code creates an instance of TIdMessage on the fly and sets its properties to
define a basic message. Alternatively, you can place an IdMessage component from
the Component Palette and configure some or all of its properties at runtime. Most
of the time that you are creating a message, however, you will not know any of its
property values until runtime. The code that actually sends the message is described
later in this section.

To create a basic e-mail message, the minimum requirements are a from address,
a recipient address, a subject, and text. It is actually legal to leave the from address and
subject blank, but it is not common to do so.

The From property is of type TIdEmailAddressItem. TIdEmailAddressItem is a
class that performs advanced handling of e-mail addresses. For this discussion, it is
sufficient to know that to set an e-mail address, simply set the Address property to
the proper e-mail address using the form user@domain.

The Recipients property is of type TIdEmailAddressList, which is a collection of
TIdEmailAddressItem instances. While the From property can contain only a single
address, the Recipients property can hold zero or more addresses. In the preceding
code sample, the TIdEMailAddressList.Add method is called to create a new
TIdEMailAddressItem, whose Address property is then set.

The Subject property is a string property and it specifies the message subject.
Body is a property of type TStringList and is used to construct simple, single-part
text e-mail messages.

Creating the TIdSMTP Client
Using a TIdSMTP instance is also very simple. In short, the Host property needs to be
initialized with the IP address (or name) of the SMTP server that you will use to send
the message. Furthermore, Send is the primary method of this component, and it
requires a single parameter of type TIdMessage. The Send method, like other Indy
methods, is blocking, and will return only after the sending is complete, or raise an
exception if an error occurs.

The following code segment demonstrates creating an IdSMTP object on the fly,
and then using it to send an IdMessage, named LMsg in this example:

L 21-8 with TIdSMTP.Create(nil) do

try

Host := FSMTPServer;

Connect;

try

Send(LMsg);

finally

2 4 B u i l d i n g K y l i x A p p l i c a t i o n s

ApDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Disconnect;

end; //try Synchronize

finally

Free;

end; // with TIdSMTP try

Creating the Client in a Thread
As you learned in Chapter 20, you can use the TIdAntiFreeze component to allow
blocking Internet Direct clients to be used in a program’s main thread without freezing
the user interface. However, to totally isolate the client code from the main thread, or
to allow multiple clients to execute simultaneously, it is important to have the client
execute from within a secondary thread. This multithreaded approach is used in the
ThreadedSMTPClient project.

The DBClientThreaded example demonstrated earlier in this chapter made use
of Kylix’s TThread class. However, Internet Direct includes a special class that is
particularly well suited for writing multithreaded Internet Direct clients. This class
is TIdThread, and it descends from TThread.

If you are already familiar with the TThread class, it is important to note that
TIdThread is different in several key areas. When you use TThread, you override the
Execute method, but with TIdThread, it is the Run method that you override instead.
It is essential that you do not override TIdThread’s Execute method, as doing so
would interfere with TIdThread’s internal operations.

You override Run in all TIdThread descendants. When the thread becomes active,
Run executes repeatedly until the thread has terminated or an unhandled exception
has occurred. The use of this may not be readily apparent for most clients. However,
it is especially useful in nearly all servers and some clients as well. This is radically
different from TThread’s Execute method, which executes only once, with the thread
terminating when Execute is exited.

To create a thread, a new class must be created that descends from TIdThread. In
this example, TSMTPThread is the new class descended from TIdThread, as shown
in the followingtype declaration:

L 21-9 uses

IdThread;

type

TSMTPThread = class(TIdThread)

public

FFrom: string;

C h a p t e r 2 1 : U s i n g I n t e r n e t D i r e c t 2 5

AppDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

FMessage: string;

FRecipient: string;

FSMTPServer: string;

FSubject: string;

procedure Run; override;

end;

In this example, the Run method simply uses the values entered into fields on the
main form to construct a mail message and send it. (The Run method also includes
some synchronization code. This code will be described later in this chapter.) When
the thread’s work is complete, the Stop method is called and the Run procedure is
exited to signal that it is finished. Calling Stop does not actually terminate the thread.
Instead, it simply signals that termination needs to occur after the Run method exits.
Until the Run method exits and IdThread actually terminates the thread, the thread is
still alive.

CAUTION

When using an IdThread, do not call the Terminate method, which IdThread inherits from TThread.
IdThreads may be pooled, making it especially important not to call Terminate. Always call the
Stop method when you want an IdThread to discontinue its work.

The following is the implementation of the Run method, taken from the
SMTPThread unit of the ThreadedSMTPClient application:

L 21-10 procedure TSMTPThread.Run;

var

LMsg: TIdMessage;

begin

LMsg := TIdMessage.Create(nil);

try

with LMsg do

begin

From.Address := FFrom;

Recipients.Add.Address := FRecipient;

Subject := FSubject;

Body.Text := FMessage;

end; //with LMsg

with TIdSMTP.Create(nil) do

try

Host := FSMTPServer;

Connect;

2 6 B u i l d i n g K y l i x A p p l i c a t i o n s

ApDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

try

Synchronize(formMain.Connected);

Send(LMsg);

with TSyncSendResult.Create do

try

FCmdResult := CmdResult;

SendResult(Self);

finally

Free;

end; //with TSyncSendResult try finally

Disconnect;

end; //try Synchronize

Synchronize(formMain.Disconnected);

finally

Free;

end; // with TIdSMPT try

finally

LMsg.Free;

end; // try

Stop;

end;

Instantiating the Client Thread
As you have learned from the other multithreaded examples in this book, you create an
instance of a thread by calling its constructor. With the TThread class, you pass a
Boolean parameter to indicate whether or not the thread should be active once it is
constructed. Most of the time, you pass a Boolean True, meaning that you want the
newly created thread to be created suspended. You do this so that you can assign data to
the thread’s properties and fields, such as FreeOnTerminate, before invoking Resume.

In the TIdThread class, Create is overridden, and uses a default CreateSuspended
parameter of True, meaning that you can invoke Create without needing to pass it an
argument if you want the thread created suspended. This is shown in the following
code segment. This segment includes both the OnClick event handler used to
instantiate the thread, as well as the method that is assigned to the thread’s
OnTerminate event handler:

L 21-11 procedure TformMain.butnSendMailClick(Sender: TObject);

begin

butnSendMail.Enabled := False;

with TSMTPThread.Create do begin

C h a p t e r 2 1 : U s i n g I n t e r n e t D i r e c t 2 7

AppDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

FreeOnTerminate := True;

OnTerminate := ThreadTerminated;

FFrom := Trim(editFrom.Text);

FMessage := memoMsg.Lines.Text;

FRecipient := Trim(editTo.Text);

FSMTPServer := Trim(editSMTPServer.Text);

FSubject := Trim(editSubject.Text);

Start;

end;

end;

procedure TformMain.ThreadTerminated(ASender: TObject);

var

s: string;

begin

s := TIdThread(ASender).TerminatingException;

if Length(s) > 0 then begin

ShowMessage('An error occurred while sending message. ' + s);

end else begin

ShowMessage('Message sent!');

end;

butnSendMail.Enabled := True;

end;

Notice that the ThreadTerminated method, which is used as the OnTerminate
event handler, checks the thread’s TerminatingException property.
TerminatingException is a string. If an unhandled exception occurs in IdThread, the
exception message is stored in the TerminatingException property, and the thread is
terminated. This OnTerminate event handler either displays to the user the exception
error message or informs the user that the e-mail was sent.

Updating the User Interface from a Thread
It is not uncommon to want to update the user interface of your client application
with feedback from Internet Direct client components. In the ThreadedSMTPClient
application, for example, the client updates a list box on the main form with ongoing
status information, such as when the server accepts the connection, confirmation of
having sent the e-mail, or SMTP server disconnection.

If the IdSMTP client was created in the main thread of the application, updating
this status information would be routine. However, as you learned in Chapter 13,
whenever you work with Visual CLX controls from within a secondary thread, you

2 8 B u i l d i n g K y l i x A p p l i c a t i o n s

ApDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

must use the TThread Synchronize method in order to promote this operation to the
application’s main thread. As a result, the TSMTPThread instance must update the
main form’s list box through a call to Synchronize.

In Chapter 13, you learned that you invoke Synchronize, passing to it the name of
a method that takes no arguments. The method you pass should contain statements
that read or write properties or invoke methods of visual controls. Synchronize, in
turn, causes that method to be invoked in the main thread, providing thread-safe
access to these methods and properties.

The ThreadedSMTPClient application employs Synchronize in two different
ways. The first technique involves the traditional invocation of Synchronize, passing
to it a method to execute in the main thread. For example, the following statement,
which appears in the TSMTPThread Run method listed earlier, invokes Synchronize,
passing to it a method associated with the main form:

L 21-12 Synchronize(formMain.Connected);

While most examples of Synchronize that you are likely to see involve the
declaration and implementation of the method used in Synchronize within the thread
class itself, the syntax of Synchronize merely requires a procedural method that takes
no arguments. It says nothing about the class to which the method belongs. Therefore,
invoking Synchronize, and passing a method associated with some other object (the
main form in this case), is perfectly valid. The following shows what the main form’s
Connected method implementation looks like:

L 21-13 procedure TformMain.Connected;

begin

Status('Connected');

end;

As you can see, the Connected method invokes the Status method to write a
message to the list box on the main form. The following is the implementation
of the Status method:

L 21-14 procedure TformMain.Status(AMsg: string);

begin

lboxStatus.ItemIndex := lboxStatus.Items.Add(AMsg);

end;

The second technique involves the use of asynchronizer class. A synchronizer
class is a helper class that you declare for the purpose of storing information, and
using that information to update visual controls in the main thread.

C h a p t e r 2 1 : U s i n g I n t e r n e t D i r e c t 2 9

AppDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

There are three parts to declaring a synchronizer class:

1. Declaring one or more member fields for holding data

2. Declaring one or more methods that update visual controls

3. Declaring a method that takes a thread and a method pointer as arguments, and
executes that method by invoking the passed thread’s Synchronize method

Synchronizer classes are especially useful when you have a large amount of data
that is used to update visual controls, or the same synchronization needs to be
performed by two or more different thread classes. In those cases, you can create an
instance of the synchronizer class within your thread, populate the fields defined in
the first step with the data that it will use, and then invoke the method declared in the
third step, passing to it one of the methods you declared in the second step. When
you are done, you free the synchronizer class.

The following is the declaration of TSyncSendResult, the synchronizer class
declared in the SMTPThread unit:

type

TSyncSendResult = class

private

FCmdResult: string;

procedure ShowResult; //a TThreadMethod type

public

procedure DoSynchronize(AThread: TIdThread; AMethod:

TThreadMethod);

end;

The implementation of the two methods of the TSyncSendResult class is shown here:

procedure TSyncSendResult.DoSynchronize(AThread: TIdThread;

AMethod: TThreadMethod);

begin

AThread.Synchronize(AMethod);

end;

procedure TSyncSendResult.ShowResult;

begin

formMain.Status('Mail accepted ok.');

formMain.Status('Server said ' + FCmdResult);

end;

3 0 B u i l d i n g K y l i x A p p l i c a t i o n s

ApDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This synchronizer class is used from within the TSMTPThread Run method,
as shown in the following code segment. As seen here, an instance of the class is
created, a value is assigned to its FCmdResult field, and its DoSynchronize method
is executed, passing to it the thread (Self) and the method that needs to be invoked
through Synchronize (ShowResult). The synchronizer object is then freed. CmdResult,
the value being assigned to FCmdResult in this example, is a property that TIdSMTP
inherits from TIdTCPConnection. This property holds the result message generated
by the call to Send.

with TSyncSendResult.Create do

try

FCmdResult := CmdResult;

DoSynchronize(Self, ShowResult);

finally

Free;

end; //with TSyncSendResult try

A ZIP Code Lookup Server and Client
This next project was designed to be as simple as possible, yet still meaningful. This
project defines a ZIP code lookup server that allows a client to send a ZIP code and
receive the city and state associated with it.

A ZIP code, if you are not familiar with the United States Postal Service, is a postal
code that identifies the city and state of the addressee. ZIP codes are used to route mail.
At a minimum, a ZIP code contains five digits (although an extension that uses nine
digits to more precisely route mail also exists). This sample ZIP code server accepts a
five-digit ZIP code from a client and returns the corresponding city and state.

Defining the ZIP Code Protocol
The first step in building a client or server is to understand the protocol. For standard
protocols, such as HTTP or FTP (File Transfer Protocol), you will want to start by
reading the appropriate RFC (Request for Comments). If a protocol does not already
exist, you must define the protocol yourself.

Creating your own protocol might at first sound like a daunting task, but it really
is not. Most protocols are conversational and plain text. “Conversational” means that
a command is given, a status response follows, and possibly data. In other words, it
is an interaction similar to two people engaged in a conversation, where each one
takes a turn speaking.

C h a p t e r 2 1 : U s i n g I n t e r n e t D i r e c t 3 1

AppDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

“Plain text” simply means that the command, status, and data are in human-readable
text. Some protocols that are very limited in scope are often not conversational, but
they are still usually in plain text (for example, Echo).

When defining your own protocol, you get to specify the nature of the commands,
status replies, and data replies. As is the case with most things, it is best if you keep
this simple. In this case, we can satisfy all of the ZIP code lookup needs with the
following simple protocol:

þ Upon connection, the server responds with a welcome message.

þ The server waits for a command.

þ The command can take one of two valid forms. It can beZipCode nnnnn
(wherennnnn is the zip code) orquit .

þ In response to aZipCode nnnnn command, the server will look up the ZIP
code and return the corresponding city and state. In response to a command
that is not well formed (for example, one that omits the ZipCode prefix or
enters an invalid ZIP code), or a nonexistent ZIP code, an empty string is
returned. In response to aquit , the server will terminate the connection.

þ The server continues to accept commands until a command causes it to disconnect.

The ZIP Code Server
Most of the techniques employed in building the ZIP code server have already been
covered in the preceding sections of this chapter; therefore, this section will focus
only on the elements of this application that are unique.

WEB REFERENCE

This project can be found in the code samples in the zipcodeserver directory.

Let’s begin with the main form, shown in Figure 21-7. This form is defined in the
following classtype declaration:

L 21-15 type

TformMain = class(TForm)

IdTCPServer1: TIdTCPServer;

Timer1: TTimer;

Memo1: TMemo;

3 2 B u i l d i n g K y l i x A p p l i c a t i o n s

ApDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

procedure FormCreate(Sender: TObject);

procedure FormDestroy(Sender: TObject);

procedure IdTCPServer1Connect(AThread: TIdPeerThread);

procedure IdTCPServer1Execute(AThread: TIdPeerThread);

procedure Timer1Timer(Sender: TObject);

private

FZipCodeList: TStrings;

public

end;

In addition to the components that this form uses (including the TIdTCPServer),
this form contains a TStrings field named FZipCodeList. This TStrings is used to
hold the ZIP code data, which is stored in a file namedZipCode.dat in the same
directory with the project source. This TStrings is populated with the contents of
ZipCode.dat from the form’s OnCreate event handler, shown here:

L 21-16 procedure TformMain.FormCreate(Sender: TObject);

begin

FZipCodeList := TStringList.Create;

FZipCodeList.LoadFromFile(ExtractFilePath(

Application.EXEName) + 'ZipCodes.dat');

end;

As you learned at the outset of this chapter, you configure an IdTCPServer by
setting DefaultPort and Active properties, as well as creating an OnExecute event

C h a p t e r 2 1 : U s i n g I n t e r n e t D i r e c t 3 3

AppDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

Figure 21-7 The main form of the ZipCodeServer project

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

handler. In this application, DefaultPort is set to 6004 and Active is set to True.
Finally, the OnExecute event handler is defined as follows:

L 21-17 procedure TformMain.IdTCPServer1Execute(AThread: TIdPeerThread);

var

LCommand: string;

LZipCode: string;

begin

with AThread.Connection do

begin

LCommand := ReadLn;

if AnsiSameText(LCommand, 'QUIT') then

begin

Disconnect;

end

else

if AnsiSameText(Copy(LCommand, 1, 8), 'ZipCode ') then

begin

LZipCode := Copy(LCommand, 9, MaxInt);

GLogCS.Enter;

try

GUserLog.Add(LZipCode);

finally

GLogCS.Leave;

end; //try

WriteLn(FZipCodeList.Values[LZipCode]);

end; //else if begin

end; //with

end;

Most of this code is straightforward. With the TIdConnection objects associated
with the thread created for this connection, the client’s command is read. Following
the ZIP code protocol defined for this server, if the command isquit (this test is
case insensitive), the connection is terminated. If this command is well formed, the
ZIP code number is assigned to the LZipCode variable and then used to look up the
correspond string in the TStrings. If the ZIP code is invalid, or the command is not
well formed, the LZipCode variable will not have a corresponding string in the
TStrings, and an empty string is returned.

There are two additional features of this code that are noteworthy. First, the server
does not disconnect except in response to aquit . If the server does not disconnect,
the OnExecute is triggered again and waits for the next command from the client.

3 4 B u i l d i n g K y l i x A p p l i c a t i o n s

ApDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The second interesting element is the use of a reference named GLogCS, which is
used to execute that object’s Enter and Leave methods. GLogGS is a critical section
(an instance of TCriticalSection), and it is used to coordinate the writing of the ZIP
codes that have been requested into a TStringList. As you learned in Chapter 13,
any time two or more threads need to work with a common resource, they need to
synchronize their access to that resource. The synchronization is required in this case
because OnExecute is executed within the context of a thread created to handle a
particular client’s request.

The following are theinitialization andfinalization sections of the
main form’s unit, where the critical section and the TStringList are created and then
destroyed:

L 21-18 initialization

GLogCS := TCriticalSection.Create;

GUserLog := TStringList.Create;

finalization

FreeAndNil(GUserLog);

FreeAndNil(GLogCS);

You might wonder why a critical section was used in this case instead of the
Synchronize method of the AThread parameter of OnExecute. The answer is that the
use of Synchronize was not required in this case, since a TStringList is not a visual
control. As you may recall from Chapter 13, synchronizing with critical sections is
more efficient than using Synchronize, since Synchronize places additional burdens
on the main thread, while critical sections do not.

The contents of the TStringList are displayed on the memo that appears on the server.
This is performed by an event handler that periodically enters the critical section (to
prevent one of the threads from writing to it momentarily), updates the memo with the
contents of the TStringList, and then leaves the critical section. This is shown in the
following code, which is associated with the timer’s OnTimer event handler:

L 21-19 procedure TformMain.Timer1Timer(Sender: TObject);

begin

GLogCS.Enter;

try

memo1.Lines.AddStrings(GUserLog);

GUserLog.Clear;

finally

GLogCS.Leave;

end;

end;

C h a p t e r 2 1 : U s i n g I n t e r n e t D i r e c t 3 5

AppDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The ZIP Code Client
The ZIP code server is fairly simple, but the client is simpler still. The ZIP code client
permits a user to enter one or more ZIP codes into a memo, and then to request the city
and state corresponding to each code. The resulting values are displayed in a list box.

As you can see in Figure 21-8, the main form also contains an IdTCPClient as well
as an IdAntiFreeze. While the SMTP client in the preceding example used a thread to
submit the client requests, the TIdTCPClient component in this example executes in the
application’s main thread. Running the Internet Direct client in the main thread means
that we do not have to use Synchronize to work with Kylix’s visual controls. However,
due to the blocking nature of Internet Direct, the IdAntiFreeze component has been
added to the main form to prevent the user interface from freezing (temporarily ceasing
to respond) while the Internet Direct client is involved in a blocking call.

WEB REFERENCE

This project can be found in the code samples in the zipcodeserver directory.

3 6 B u i l d i n g K y l i x A p p l i c a t i o n s

ApDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

Figure 21-8 The main form of the ZipCodeClient project in the designer, showing both
the user interface as well as the two Internet Direct components used by
this client

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The ZIP code protocol defined earlier, as well as the needs of the client application,
dictate how the client must perform its task. In this case, the client will perform the
following tasks:

1. Connect to the server.

2. Read the welcome message from the server.

3. For each line the user entered in the TMemo, send the ZIP code request to the
server and read the response.

4. As each response is read, write the response into the list box.

5. When done processing the ZIP code list, disconnect from the server.

These steps are performed by the OnClick event handler associated with the
button labeled Lookup. The following is this event handler:

procedure TformMain.butnLookupClick(Sender: TObject);

var

i: integer;

s: string;

begin

butnLookup.Enabled := true;

try

lboxResults.Clear;

with Client do

begin

Connect;

try

// Read the welcome message

lboxResults.Items.Add(ReadLn);

// Submit each zip code and read the result

for i := 0 to memoInput.Lines.Count - 1 do

begin

WriteLn('ZipCode ' + memoInput.Lines[i]);

// Write the zip code to the list box

lboxResults.Items.Add(memoInput.Lines[i]);

// Read the server’s response

s := ReadLn;

if Length(s) = 0 then

begin

s := '-- No entry found for this zip code.';

end; //if Length

C h a p t e r 2 1 : U s i n g I n t e r n e t D i r e c t 3 7

AppDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

// Write the response plus a

// blank line to the list box

lboxResults.Items.Add(s);

lboxResults.Items.Add('');

end; //for i

WriteLn('Quit');

finally

Disconnect;

end; // Connect try

end; //with Client do

finally

butnLookup.Enabled := True;

end; //try

end;

Figure 21-9 shows what the ZIP code client application looks like when it is
running and has retrieved ZIP codes from a running ZIP code server.

Creating a Console Server
All of the servers demonstrated so far in this chapter have required an X server, since
visual objects (including the TForm class) were used to build the server’s interface.
But one of the more popular uses for Linux is as a server (as opposed to an end-user
workstation), and many servers do not support a graphical user interface. Instead,

3 8 B u i l d i n g K y l i x A p p l i c a t i o n s

ApDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

Figure 21-9 The ZIP code client has retrieved four city/state replies from the ZIP
code server.

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

servers running on these machines are console servers and are launched from the
command line or through a shell script.

Fortunately, it is very easy to build a console server using Internet Direct
components. This process can be reduced to the following steps:

1. Create a new application using the Console Application wizard from the
Object Repository.

2. Use the Object Repository to add a data module to this application. The data
module will be your container for Kylix components. At a minimum, you will
want to add one of the Internet Direct server components to the data module,
but you are free to add any other nonvisual components, including data access
or dbExpress components.

3. Add aninitialization section to the data module’s unit, and create
an instance of the data module from this section.

4. Add afinalization section to the data modules unit, and free the data
module instance within that section.

5. In the main body of the project source file, use WriteLn to write a message
to the standard output indicating that the server is running.

6. Following the write statement, invoke the ReadLn function to read from the
standard input (the keyboard). This ReadLn plays the role of detecting when
to terminate the server.

Creating the Console Server Example
The following steps demonstrate how to create a simple console server using Kylix:

WEB REFERENCE

This project can be found in the code samples in the consoleserver directory.

1. Select File | New to display the Object Repository.

2. Select the Console Application wizard and click OK to create the initial
console project.

3. Select File | New to display the Object Repository again, this time selecting
the Data Module wizard.

C h a p t e r 2 1 : U s i n g I n t e r n e t D i r e c t 3 9

AppDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

4. Add an IdTCPServer component from the Indy Servers page of the Component
Palette to the data module.

Ill 21-7

5. Set the IdTCPServer’s DefaultPort property to6006and its Active property
to True.

6. Add the following OnExecute event handler to the IdTCPServer:

procedure TDataModule1.IdTCPServer1Execute(AThread:
TIdPeerThread);
var

s: String;
begin
with AThread.Connection do
try

WriteLn('Enter some text (type quit to exit: ');
s := ReadLn;
if AnsiSameText('quit', s) then
begin

Disconnect;
Exit;

end; // if quit
WriteLn('You entered : ' + s);

except
on e: Exception do
begin

WriteLn('Error: ' + e.Message);
end; // on

end; // try
end;

7. Add the followinginitialization andfinalization sections after
the OnExecute event handler:

initialization
DataModule1 := TDataModule1.Create(nil);

finalization
FreeAndNil(DataModule1);

4 0 B u i l d i n g K y l i x A p p l i c a t i o n s

ApDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

8. Modify the project source file to look like the following:

program Project1;

{$APPTYPE CONSOLE}

uses
DataMod in 'DataMod.pas' {DataModule1: TDataModule};

begin
WriteLn('Console Server Running');
ReadLn;

end.

9. Save your project to a directory using the nameConsoleServer.dpr, and
then select Project | Compile ConsoleServer, or pressCTRL-F9.

The console server is complete and ready to be tested.

TIP

The OnExecute in this console server will automatically execute repeatedly so long as the client
remains connected. This was also true of the ZIP code lookup server. In other words, it is not
necessary to put a looping control structure within OnExecute to read and respond to multiple,
sequential client requests.

Testing a Plain-Text Console Server
At the beginning of this chapter, you learned to test a plain text server using Telnet
as a client. This testing approach will work with console servers as well as they will
with servers running under X Windows. The only real difference is that you cannot
launch your console server from within Kylix (since the console project does not
support X Windows).

Instead, you must open a console window and launch the server from the command
prompt (or log out of your X Windows session and do all of your testing from two
or more console sessions).

The following steps demonstrate how to test your Kylix console server using
console windows.

1. Begin by opening a console window. For simplicity’s sake, make the directory
in which you saved and compiled your console server the current directory.

2. Initialize the LD_LIBRARY_PATH environment variable to the fully qualified
name of thebin directory under the Kylix installation directory, and then

C h a p t e r 2 1 : U s i n g I n t e r n e t D i r e c t 4 1

AppDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

export this environment variable. For example, if you installed Kylix under
/usr/local/kylix , you would enter the following two statements:

LD_LIBRARY_PATH=”/usr/local/kylix/bin/”
export LD_LIBRARYPATH

3. You are now ready to launch your console server. Assuming that you named
the project ConsoleServer, type the following command at the command
prompt:

./ConsoleServer

4. Your server is running and will continue to do so until you pressENTERin this
console window. In order to test this server using a Telnet client, you must
open another console window.

Ill 21-8

5. In this second console window, enter the following command at the command
prompt to connect to the console server:

telnet 127.0.0.1 6006

6. The console server accepts the connection and asks you for input. Type some
characters and pressENTER. After receiving your input, the server echoes that
input back and then OnExecute triggers again, with the server asking for more
input. Disconnect from the server by enteringquit .

4 2 B u i l d i n g K y l i x A p p l i c a t i o n s

ApDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Ill 21-9

C h a p t e r 2 1 : U s i n g I n t e r n e t D i r e c t 4 3

AppDev / Building Kylix Applications / Jensen & Anderson / 2947-6 / Chapter 21

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev / Building Kylix Applications / Jensen & Anderson / 2947-6 /
Blind Folio 44

P:\010Comp\ApDev\947-6\ch21.vp
Thursday, May 31, 2001 10:45:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

	In This Chapter:
	Which Comes First, the Client or the Server?
	A Simple Server Example
	A Database Server Example
	Handling Exceptions in Clients
	Sending Mail Using TIdSMTP
	A ZIP Code Lookup Server and Client
	Creating a Console Server

